
Seven Deadly Sins of Software Reviews1

Karl E. Wiegers

Process Impact
www.processimpact.com

A quarter-century ago, Michael Fagan of IBM developed the software inspection
technique, a method for finding defects through manual examination of software work products
by a group of the author’s peers. Many organizations have achieved dramatic results from
inspections, including IBM, Raytheon, Motorola, Hewlett Packard, and Bull HN. However, other
organizations have had difficulty getting any kind of software review process going. Considering
that effective technical reviews are one of the most powerful software quality practices available,
all software groups should become skilled in their application.

This article describes seven common problems that can undermine the effectiveness of
software reviews of any type (inspections being a specific type of formal review). I describe
several symptoms of each problem, and I suggest several possible solutions that can prevent, or
correct, the problem. By laying the foundation for effective software technical reviews and
avoiding these common pitfalls, you too can reap the benefits of this valuable quality practice.

Participants Don’t Understand the Review Process

Symptoms: Software engineers don’t instinctively know how to conduct and contribute to
software reviews. Review participants may have different understandings of their roles and
responsibilities, and of the activities conducted during a review. Team members may not know
which of their software work products should be reviewed, when to review them, and what
review approach is most appropriate in each situation.

Team members may not understand the various types of reviews that can be performed.
The terms “review”, “inspection”, and “walkthrough” are often used interchangeably, although
they are not the same beast. A lack of common understanding about review practices can lead to
inconsistencies in review objectives, review team size and composition, forms used,
recordkeeping, and meeting approaches. Too much material may be scheduled for a single review,
because participants are not aware of realistic review rates. It may not be clear who is running a
review meeting, and meetings may lose their focus, drifting from finding defects to solving
problems or challenging the author’s programming style. Results from these points of confusion
are typically missed defects, frustration, and an unwillingness to participate in future reviews.

Solutions: Training is the best way to ensure that your team members share a common
understanding of the review process. For most teams, four to eight hours of training will be
sufficient, though you wish to obtain additional specialized training for those who will play the
role of moderator in formal inspections. Training can be an excellent team-building activity, as all
members of the group hear the same story on some technical topic and begin with a shared
understanding and vocabulary.

1 Originally published in Software Development magazine March, 1998. Reprinted with permission from Software
Development magazine.

Seven Deadly Sins of Software Reviews Page 2

Your group should also adopt some written procedures for how reviews are to be
conducted. These procedures will help review participants understand their roles and activities, so
they can consistently practice effective and efficient reviews. Your peer review process should
include procedures for both formal and informal reviews. Not all work products require formal
inspection (though inspection is indisputably the most effective review method), so a palette of
procedural options will let team members choose the most appropriate tool for each situation.
Adopt standard forms for recording issues found during review meetings, and for recording
summaries of the formal reviews that were conducted. Good resources for guidance on review
procedures and forms are Software Inspection Process by Robert Ebenau and Susan Strauss
(McGraw-Hill, 1994) and Handbook of Walkthroughs, Inspections, and Technical Reviews, 3rd
Edition by Daniel Freedman and Gerald Weinberg (Dorset House, 1990).

Reviewers Critique the Producer, Not the Product

Symptoms: Initial attempts to hold reviews sometimes lead to personal assaults on the
skills and style of the author. A confrontational style of raising issues exacerbates the problem.
Not surprisingly, this makes the author feel beaten down, defensive, and resistant to legitimate
suggestions that are raised or defects that are found. When authors feel personally attacked by
other review participants, they will be reluctant to submit their future products for review. They
may also look forward to reviewing the work of their antagonists as an opportunity for revenge.

Solutions: When helping your team begin reviews, emphasize that the correct battle lines
pit the author and his peers against the defects in the work product. A review is not an
opportunity for a reviewer to show how much smarter he is than the author, but rather a way to
use the collective wisdom, insights, and experience of a group of peers to improve the quality of
the group’s products. Try directing your comments and criticisms to the product itself, rather than
pointing out places the author made an error. Practice using the passive voice: “I don’t see where
these variables were initialized, ”not “You forgot to initialize these variables”

In an inspection, the roles of the participants are well defined. One person—not the
author—is the moderator and leads the inspection meeting. In the review courses I teach, students
often ask why the author does not lead a formal inspection meeting. One reason is to remove the
confrontational nature of describing a defect directly to the person who is responsible for the
defective work product. I have found the best results come when both reviewers and author check
their egos (and weapons!) at the door and focus on improving the quality of a work product.

Reviews Are Not Planned

Symptoms: On many projects, reviews do not appear in the project’s work breakdown
structure or schedule. If they do appear in the project plan, they may be shown as milestones,
rather than as tasks. Because milestones take zero time by definition, the non-zero time that
reviews actually consume may make the project appear to slip its schedule because of reviews.
Another consequence of failing to plan the reviews is that potential review participants do not
have time to take part when one of their peers asks them to join in.

Solutions: A major contributor to schedule overruns is inadequate planning of the tasks
that must be performed. Not thinking of these tasks doesn’t mean that you won’t perform them; it
simply means that when you do perform them, the project will wind up taking longer than you
expected. The benefits of well-executed software technical reviews are so great that project plans
should explicitly show that key work products will be reviewed at planned checkpoints.

Seven Deadly Sins of Software Reviews Page 3

When planning a review, estimate the time required for individual preparation, the review
meeting (if one is held), and likely rework. (The unceasing optimism of software developers often
leads us to forget about the rework that follows most quality activities.) The only way to create
realistic estimates of the time needed is to keep records from your reviews of different work
products. For example, you may find that your last 20 code reviews required an average of 6
labor-hours of individual preparation time, 8 labor-hours of meeting time, and 3 labor-hours of
rework. Without collecting such data, your estimates will forever remain guesses, and you will
have no reason to believe that you can realistically estimate the review effort on your future
projects.

Review Meetings Drift Into Problem-Solving

Symptoms: Software developers are creative problem solvers by nature. We enjoy nothing
more than sinking our cerebrums into sticky technical challenges, exploring elegant solutions to
thorny problems. Unfortunately, this is not the behavior we want during a technical review.
Reviews should focus on finding defects, but too often an interesting defect triggers a spirited
discussion about how it ought to be fixed.

When a review meeting segues into a problem-solving session, the progress of examining
the product slows to a halt. Participants who aren’t equally fascinated by the problem at hand may
become bored and tune out. Debates ensue as to whether a proposed bug really is a problem, or
whether an objection to the author’s coding style indicates brain damage on the part of the
reviewer. Then, when the reviewers realize the meeting time is almost up, they hastily regroup,
flip through the remaining pages quickly, and declare the review a success. In reality, the material
that is glossed over likely contains some major problems that will come back to haunt the
development team in the future.

Solutions: The kind of reviews I’m discussing in this article have one primary purpose: to
find defects in a software work product. Solving problems is usually a distraction that siphons
valuable time away from the focus on error detection. One reason inspections are more effective
than less formal reviews is that they have a moderator who controls the meeting, including
detecting when problem-solving is taking place and bringing the discussion back on track. Certain
types of reviews, such as walkthroughs, may be intended for brainstorming, exploring design
alternatives, and solving problems. This is fine, but don’t confuse a walkthrough with a defect-
focused review such as an inspection.

My rule of thumb is that if a problem can be solved with no more than 1 minute of
discussion, go for it. You have the right people in the room and they’re focused on the issue. But
if it looks like the discussion will take longer, remind the recorder to note the item and ask the
author to pursue solutions off-line, after the meeting.

Rarely, you may encounter a show-stopper defect, one that puts the whole premise of the
product being reviewed into question. Until that issue is resolved, there may be no point in
completing the review. In such a case, you may choose to switch the meeting into a problem-
solving mode, but then don’t pretend that you completed the review as intended.

Reviewers Are Not Prepared

Symptoms: You come into work at 7:45AM and find a stack of paper on your chair with
a note attached: “We’re reviewing this code at 8:00AM in conference room B.” There’s no way
you can properly examine the work product and associated materials in 15 minutes. If attendees at

Seven Deadly Sins of Software Reviews Page 4

a review meeting are seeing the product for the first time, they may not understand the intent of
the product or its assumptions, background, and context, let alone be able to spot subtle errors.
Other symptoms of inadequate preparation are that the work product copies brought to the
meeting aren’t marked up with questions and comments, and some reviewers don’t actively
contribute to the discussion.

Solutions: Since about 75% of the defects found during inspections are located during
individual preparation, the review’s effectiveness is badly hampered by inadequate preparation
prior to the meeting. This is why the moderator in an inspection begins the meeting by collecting
the preparation times from all participants. If the moderator judges the preparation time to be
inadequate (say, less than half the planned meeting time), she should reschedule the meeting.
Make sure the reviewers receive the materials to be reviewed at least two or three days prior to
the scheduled review meeting.

When reviews come along, most people don’t want to interrupt their own pressing work
to carefully study someone else’s product. Try to internalize the fact that the time you spend
reviewing a co-worker’s product will be repaid by the help you’ll get from your friends when your
own work comes up for review. Use the average collected preparation times to help reviewers
plan how much time to allocate to this important stage of the review process.

The Wrong People Participate

Symptoms: If the participants in a review do not have appropriate skills and knowledge to
find defects, their review contributions are minimal. Participants who are there only to learn may
benefit, but they aren’t likely to improve the quality of the product. Management participation in
reviews may (but doesn’t always) also lead to poor review results. If the team feels the manager is
counting the bugs found to hold against the author at performance appraisal time, they may
hesitate to raise issues during the discussion that might make their colleague look bad.

Large review teams can also be counterproductive. I once participated in a review
(ironically, of a draft peer review process) that involved 14 reviewers. A committee of 14 can’t
agree to leave a burning room, let alone agree on what’s an error and how a sentence should be
phrased. Large review teams can generate multiple side conversations that do not contribute to
the review objectives and slow the pace of progress.

Solutions: Review teams having 3 to 7 participants are most effective. The
reviewers should include the work product’s author, the author of any predecessor or
specification document, and anyone who will be a victim of the product. For example, a design
review should include the designer, the author of the requirements specification, the programmer,
and whoever is responsible for integration testing. On small projects, one person may play all
these roles, so ask some of your peers to represent the other perspectives. It’s okay to include
some participants who are there primarily to learn (an important side benefit of software reviews),
but focus on people who will spot bugs.

I’m not dogmatic on the issue of management participation. As a group leader, I also
wrote software, so I needed to have it reviewed (thereby setting an example for the rest of the
team), and I was able to contribute usefully to reviews of other team members’ products. This is
very much a cultural issue, dependent on the mutual respect and attitudes of the team members. A
good rule of thumb is that only a first-line manager is permitted in a review, and only if it is
acceptable to the author. Managers can never join in the review “just to see what’s going on.”

Seven Deadly Sins of Software Reviews Page 5

Reviewers Focus on Style, Not Substance

Symptoms: Whenever I see a defect list containing mostly style issues, I’m nervous that
substantive errors have been overlooked. When review meetings turn into debates on style and the
participants get heated up over indentation, brace positioning, variable scoping, and commenting,
they aren’t spending energy on finding logic errors and missing functionality.

Solutions: Style can be a defect, if excessive complexity, obscure variable names, and
coding tricks make it hard to understand and maintain the code. This is obviously a value
judgment: an expert programmer can understand complex and terse programs more readily than
someone who has less experience. Control the style distraction by adopting standard templates for
project documents and coding standards or guidelines. These will help make the evaluation of
style conformance more objective. Use code reformatting tools to enforce the standards, so
people can program the way they like, then convert the result to the established group
conventions.

Be flexible and realistic about style. It’s fine to share your ideas and experiences on
programming style during a review, but don’t get hung up on minor issues and don’t impose your
will on others. Programming styles haven’t come to Earth from a font of Universal Truth, so
respect individual differences when it is a matter of preference, rather than clarity.

Any software engineering practice can be performed badly, thereby failing to yield the
desired benefits. Technical reviews are no different. Many organizations have enjoyed excellent
results from their inspection programs, with returns on investment of up to 10 to 1. Others,
though, perceive reviews to be frustrating wastes of time, usually because of these seven deadly
sins, not because review are inherently time-wasters. By staying alert to these common problems
of reviews and applying the solutions I have suggested here, you can help make your technical
review activities be a stellar contributor to your software quality program.

