
Practical Software Requirements: Engineering and Management

Karl E. Wiegers
August 15, 1998

Proposal

Despite some 50 years of collective experience, many software development organiza-
tions continue to struggle with the collection, validation, and management of requirements for
their products. The difficult and often frustrating requirements process frequently gets short
shrift from practitioners who would prefer to write code than deal with elusive and inconsistent
customers. The requirements process underscores the fact that the software profession involves
roughly equal portions of computing and communication. We seem to be better at the former
than the latter.

 The author has written several articles about software requirements, and some of his ex-
periences with applying improved requirements techniques were related in two chapters of his
first book, Creating a Software Engineering Culture (Dorset House, 1996). In 1997 and 1998,
the author presented more than 30 full- and half-day seminars on software requirements engi-
neering and management at many companies, conferences, and public seminars. There is clearly
a great deal of interest in this topic, because many companies are still having problems with their
requirements practices. Requirements process improvement is also being motivated by the Soft-
ware Capability Maturity Model, which identifies requirements management as one of the key
process areas that must be mastered to achieve CMM maturity level 2.

 The volume of published literature on software requirements is huge, with well over one
thousand books, articles, and conference proceedings papers available. However, most practitio-
ners do not appear to be well acquainted with this body of literature. The available books range
from turgid texts, to thin collections of essays, to useful “good practices” references. Practical
application of the research approaches presented in many of the more academic papers and pro-
ceedings seem to be rare. There is no shortage of effective techniques available for gathering,
analyzing, documenting, and managing software requirements. However, a substantial gap re-
mains between the available body of knowledge and current industrial and commercial practice.

Reader Objectives

The proposed book is intended to address this gap. The purpose of the book is to con-
cisely present effective techniques for the requirements engineering and management processes
from a practical perspective that can benefit any software organization. The book is intended to
be relatively short (approximately 250 pages), easy to read, and highly pragmatic. Guidance on
the realities of implementing improved requirements engineering and management techniques in
practice will be included.

Readers will be able to accomplish the following by applying the contents of this book:

 Achieve higher customer satisfaction, and reduce maintenance and support costs.
 Educate both development and customer organizations about the risks and costs they

face from inadequate requirements work, so the stakeholders can agree to devote ap-
propriate effort to this critical set of tasks.

 Determine who really represents the voice(s) of the customer for their product, and
use structured processes for gathering and analyzing input from those sources.

Practical Software Requirements: Engineering and Management Page 2

 Differentiate between high-level business or user requirements, and low-level devel-
oper, or functional, requirements.

 Document both functional and non-functional requirements in formats and levels of
detail appropriate for each project.

 Reduce project rework, thereby improving productivity, by improving the quality of
their requirements early in the project’s development cycle.

 Develop more realistic, accurate, and achievable schedules and plans by more thor-
oughly understanding the problem being solved prior to making commitments.

 Better manage the scope creep that affects many software projects by implementing a
structured process for collecting, evaluating, and incorporating proposed changes in
product requirements.

 Actually implement improved requirements engineering and requirements manage-
ment processes in their organizations.

The author’s experience suggests that most practitioners dealing with software require-

ments use informal methods for gathering requirements, and they document them using natural
language. Few practitioners seem to use formal logic, mathematical representations, or rigorous
modeling as routine requirements practices. The emphasis of this book is therefore on techniques
to improve the requirements engineering and management processes without demanding unrealis-
tic current knowledge or a commitment to learning complex new approaches. Formal require-
ments representation techniques and methodologies are not addressed. Nor does this book at-
tempt to comprehensively summarize the entire domain of software requirements practice and
research. Instead, the reader is presented with a palette of established good requirements devel-
opment practices, together with examples of their application on various projects.

Synopsis of Topics Covered

Nowhere more so than in the requirements gathering portions of the project do all of the
stakeholders share common interests. Inadequate customer involvement leads to an “expectation
gap” between what is expected and what is delivered. Collaboration of customers and developers
is explored, emphasizing a “product champion” model for achieving effective customer partici-
pation on requirements engineering. Effective methods for conducting dialogs between custom-
ers and developers around requirements are explored, including a chapter that provides guidance
for those sitting on the customer side of the table. The use case method is emphasized as a pre-
ferred technique for eliciting requirements, but from a non-dogmatic and highly accessible per-
spective. The need for two levels of requirements detail, the higher-level user view (represented
in use cases) and the lower-level developer view (represented in detailed functional require-
ments) is addressed.

No matter how they are gathered, requirements must be documented, analyzed, and re-
viewed from a variety of perspectives. No single view of the requirements provides an adequate
representation. Suggested contents and organization of a structured software requirements speci-
fication are described. A variety of requirements modeling techniques are illustrated. In addition
to the more obvious functional requirements, the book also examines the importance of non-
functional requirements, including product quality attributes. Case studies and examples are pro-
vided from the author’s personal experience to illustrate the effective application of all these
techniques on a variety of projects in different organizations.

Techniques for verifying the correctness and completeness of requirements through tech-
nical reviews and requirements-based testing methods are emphasized. While most software en-
gineers have been taught they should do test planning in parallel with development, this happens
infrequently in practice. The use case method provides a powerful technique for developing
functional test cases very early in the project. Examples are provided of combining use cases,
conceptual test cases, dialog maps (models of user interface architecture), and functional re-

Practical Software Requirements: Engineering and Management Page 3

quirements to improve the ultimate quality of the product long before a line of code has been
written.

Once gathered, documented, reviewed, and baselined, changes to requirements must be
managed in a structured fashion to minimize the adverse impact of those changes on the project’s
quality and chances of success. Concepts and practices for requirements management are
adapted from the Software Capability Maturity Model, including the requirements traceability
matrix, version control, and change control processes. The use of impact analysis of proposed
requirements changes is presented as one way to help manage the scope creep that plagues so
many software projects. Examples of effective requirements change control processes and proce-
dures are provided, and the benefits are elaborated.

Distinctive Features

Case Studies. To help readers see how to apply the principles presented in practice, two
major case studies will be threaded throughout the book. Both are adapted from the author’s ex-
periences with using these requirements techniques on real projects. The first case study is a me-
dium-sized information system called the Chemical Tracking System. The second is a web de-
velopment project. Each case study will provide examples of requirements-related deliverables
(e.g., software requirements specification, use case descriptions, statement of scope, models,
quality attributes statements, change request). Sample dialogs among project stakeholders in
various requirement-related situations will also be drawn from the case studies.

Requirements Practices Self-Assessment. A self-assessment questionnaire will be in-

cluded, to allow readers to evaluate their current requirements engineering and requirements
management practices. Pointers will be provided to specific parts of the book that can help read-
ers address their problem areas.

Annotated Bibliography. Each chapter will include an annotated bibliography of refer-
ences cited and other pertinent readings, rather than a simple citation list. If the size of the book
creeps up beyond 250 pages, this feature may be dropped in favor of the additional content.

Requirements Problems and Solutions Matrix. An appendix will be included that lists

many typical problems practitioners encounter with gathering, documenting, or managing re-
quirements. These problems are collected from small group discussions held as part of the one-
day seminar called “In Search of Excellent Requirements” that the author has presented many
times to diverse groups. The problems, their impacts, and possible root causes are described, and
specific techniques from the book are suggested as possible remedies.

Market

 This book has a potentially large readership drawn from any software development or-
ganization (commercial, management information systems, or contract). Anyone involved in
gathering, analyzing, or documenting requirements, and anyone involved in dealing with changes
to product requirements after development has begun, will find the contents to be valuable. User
representatives who wish to collaborate more effectively with development organizations on re-
quirements development will also find this useful. The book will also help both development and
customer managers understand the software requirements process better.

Much of the material in this book has been presented in the author’s seminars at confer-
ences, companies, and in public forums. In addition to the predominant audience of software de-
velopers, audiences have included managers, requirements engineers, business analysts, process
improvement specialists, marketing staff, and end users, All audience groups have found the ma-

Practical Software Requirements: Engineering and Management Page 4

terial to be easy to understand and valuable. The appeal of this book will be in its emphasis on
immediately applicable, contemporary, practical approaches (as opposed to theory or methodol-
ogy-specific focus), and a conversational, easy-to-understand writing style.

About the Competition

Andriole, Stephen J. Managing Systems Requirements: Methods, Tools, and Cases. New
York: McGraw-Hill, 1996. 318 pages, hardcover, ISBN 0-07-001974-6, $45.00. Summary: A
fairly readable treatment of requirements topics, with emphasis on the CMM’s approach and on
requirements management tools.

Andriole describes the requirements management process, requirements analysis and modeling,
and requirements change management. The approach taken is adapted and extended from the
Software Capability Maturity Model. Each chapter includes a rather clumsy executive briefing in
bullet list format. 90 pages are devoted to summaries of more than 70 requirements management
tools, although some of the more recent and well-established tools are not mentioned. Unfortu-
nately, tool information rapidly becomes out of date, including version numbers, prices, and even
vendors. Some case studies are presented, including some on process re-engineering that appear
unrelated to the rest of the book. The book is quite readable and fairly practical, but the large sec-
tion on tools is more of a distraction than an aid.

Davis, Alan M. Software Requirements: Objects, Functions, and States. Englewood Cliffs,
N.J.: PTR Prentice-Hall, 1993. 521 pages, hardcover, ISBN 0-13-805763-X, $70.00. Summary:
The most comprehensive and coherent textbook presently available.

Davis has written the current definitive text on software requirements. It includes an amazing
bibliography of 772 references, many with descriptive annotations. Davis addresses the breadth
of techniques used for requirements analysis. In fact, just one part of one chapter is 123 pages
long, called “Survey of Techniques” for problem analysis. Nice chapters addresses the software
requirements specification, behavioral requirements, nonbehavioral requirements, and prototyp-
ing. The book’s main drawbacks are it’s very comprehensiveness and its size. I believe most
practitioners are not attracted to the prospect of having to sort through such an abundance of
choices for practices (10 approaches for behavioral requirements techniques alone). Short shrift
is also given to customer interactions and requirements process improvement, topics the pro-
posed book would address in some detail.

Ferdinandi, Pat. Clarifying the Software Requirement Mystique. (manuscript in preparation).
Summary: Similar material to the current proposal, but more conceptual, with much less content
on guiding the reader in the practical application of improved requirements practices.

This proposed book identifies the requirements problem as a misunderstanding of the definition,
process, practices, and management of requirements. It is intended to address the requirements
process, requirements engineering, requirements standards, and requirements management. It
will include sections on what a requirement is, the requirements evolutionary process, the re-
quirements engineer’s skill set, and future directions in requirements. The author’s proposal
states, “This book is a generic book on requirements for Information Technology Solutions.
Though techniques and methods may be introduced, this book does not include a tutorial of cur-
rent techniques and methods. It is the author's opinion that in order to learn how to do some-
thing, you must understand what it is you are to do. Other sources for “how-to” are recom-
mended within the text.” It therefore differs significantly from my proposed book, which empha-
sizes the “how to do it” and practical application of requirements techniques.

Practical Software Requirements: Engineering and Management Page 5

Gause, Donald C., and Gerald M. Weinberg. Exploring Requirements: Quality Before De-
sign. New York: Dorset House Publishing, 1989. 300 pages, hardcover, ISBN 0-932633-13-7,
$44.95. Summary: A good, readable book on important general product requirements topics us-
ing an anecdotal approach, but no direct treatment of software issues.

Gause and Weinberg address important issues in the requirements of any product, including the
problems caused by the ambiguity of language. However, the problems of software requirements
are not specifically addressed; the words “software” and “specification” do not even appear in
the index. There are good sections on how to talk with users to understand the problem and re-
duce ambiguity, brainstorming, and the use of context-free questions. A nice section addresses
devising test cases to test requirements. There is nothing on what should go into a good software
requirements document or how to structure it. The authors include a section on general ideas
about doing quality reviews, but not much specific about how to review requirements documents
(who should participate, what to look for, and so on). There’s a useful discussion of product at-
tributes that go beyond functionality, but again not as it pertains to software.

Jackson, Michael. Software Requirements & Specifications: A Lexicon of Practice, Principles
and Prejudices. Reading, Mass.: Addison-Wesley, 1995. 228 pages, paperback, ISBN 0-201-
87712-0, $26.95. Summary: An alphabetical collection of thoughts and stories on many topics,
some of which seem only tangentially related to the requirements process. Neither a tutorial nor
a reference on how the reader improve current requirements practices.

In this collection of essays, Jackson presents much valuable food for thought, but little pragmatic
guidance for the reader who wishes to better understand the software requirements process and
improve his own. Many unfamiliar concepts and terms are presented, which I have never before
seen in writings on software development. Useful examples are provided of shortcomings in sev-
eral widely used requirements analysis practices. Historical and anecdotal stories are often used
to illustrate the points. They are amusing and interesting, but not that helpful. Formal notations,
such as predicate logic, are sprinkled throughout the book. I have never seen a requirements
practitioner use such notations, and I don’t think they’ll be understood by most readers (includ-
ing myself).

Sommerville, Ian, and Pete Sawyer. Requirements Engineering: A Good Practice Guide.
New York: John Wiley & Sons, 1997. 404 pages, paperback, ISBN 0-471-97444-7, $49.99.
Summary: An excellent reference compilation of sound requirements practices, well-organized
and well-presented, with many good guidelines for effective implementation.

This useful book addresses some 66 guidelines for effective requirements engineering and re-
quirements management. Each guideline includes a statement of benefits, ideas for implementa-
tion, costs, and potential problems. The book is clearly written and easy to understand. The full
breadth of the requirements development discipline is addressed. It differs from the proposed
book in that it is more of a reference than a tutorial. Case studies that illustrate application of the
techniques are not included.

Wieringa, Roel. Requirements Engineering: Frameworks for Understanding. New York: John
Wiley and Sons, 1996. 453 pages, paperback, ISBN 0-471-95884-0, $80.00. Summary: Heavy on
methodology and modeling, written in a an academic fashion that is not easy to read.

This textbook emphasizes the use of models and methods for requirements engineering, includ-
ing entity-relationship models (58 pages), structured analysis (52 pages), Jackson System Devel-
opment (52 pages), and model integration (30 pages). Another 50 pages are devoted to develop-
ment strategies and life cycles and how to select one. The requirements specification itself re-
ceives a scant 10 pages of treatment. Despite the rigorous treatment of modeling methods, ob-
ject-oriented approaches are not addressed. Practical approaches to gathering functional and non-

Practical Software Requirements: Engineering and Management Page 6

functional requirements from users and managing the requirements over time are lacking. The
book has a ponderous and academic tone that makes reading it a chore, not a pleasure.

Publishing Details

This book is intended to be approximately 250 pages, or about 75,000 words, long. Illustrations
will be relatively simple line drawings or models imported from software graphical design tools
(no photographs). There will be approximately 30-40 such illustrations. It may be desirable to
obtain permission to reuse up to four figures from the author’s previous book, Creating a Soft-
ware Engineering Culture.

The publication format should be intended to make the book as accessible and appealing as pos-
sible; a reasonable price point might be $30. Draft chapters will be posted on the author’s web
site at www.processimpact.com as they become available. Approximately 20 reviewers from
many different companies and backgrounds have volunteered to participate in chapter reviews.
The final manuscript will be completed by approximately July 1, 1999.

Author Background

Karl E. Wiegers is Principal Consultant with Process Impact in Rochester, New York. Previ-
ously, he spent 18 years at Eastman Kodak Company, including experience as a photographic
research scientist (4 years), software developer (9 years), software manager (3 years), and soft-
ware process and quality improvement leader (4 years). Karl received a B.S. degree in chemistry
from Boise State College, and M.S. and Ph.D. degrees in organic chemistry from the University
of Illinois. He is a member of the IEEE, IEEE Computer Society, American Society for Quality,
and Association for Computing Machinery.

Karl is the author of the Jolt Productivity award-winning book Creating a Software Engineering
Culture (Dorset House, 1996), as well as more than 110 articles on many aspects of computing,
chemistry, and military history. He is a frequent speaker at software conferences, public semi-
nars, and professional society meetings. As an independent consultant, Karl presents training
seminars and consulting engagements at a variety of companies on topics including requirements
engineering and management, software process improvement, software technical reviews, soft-
ware measurement, and risk management.

Recent Publications

1. “Know Your Enemy: Software Risk Management,” Software Development (October, 1998).
2. “Read My Lips: No New Models!”, IEEE Software (September/October, 1998).
3. “Software Process Improvement: Eight Traps to Avoid,” Crosstalk, (September 1998).
4. “A Project Management Primer,” Software Development, vol. 6, no. 6 (June 1998).
5. “Molding the CMM to Your Organization,” Software Development, vol. 6, no. 5 (May 1998).
6. “The Seven Deadly Sins of Software Reviews,” Software Development, vol. 6, no. 3 (March

1998).
7. “Metrics: Ten Traps to Avoid,” Software Development, vol. 5, no. 10 (October 1997).
8. “Standing on Principle,” Journal of the Quality Assurance Institute, vol. 11, no. 3 (July

1997).
9. “Recognizing Achievements Great and Small,” American Programmer, vol. 10, no. 5 (May

1997).
10. “Listening to the Customer’s Voice,” Software Development, vol. 5, no. 3 (March 1997).
11. “Misconceptions of the CMM,” Software Development, vol. 4, no. 11 (November 1996).
12. “Software Process Improvement: 10 Traps to Avoid,” Software Development, vol. 4, no. 5

(May 1996).

Practical Software Requirements: Engineering and Management Page 7

13. “Reducing Maintenance with Design Abstraction,” Software Development, vol. 4, no. 4
(April 1996).

14. “Improving Quality through Software Inspections,” Software Development, vol. 3, no. 4
(April 1995).

15. “Creative Client/Server for Evolving Enterprises” (with Bruce Thompson), Software Devel-
opment, vol. 3, no. 2 (February 1995).

16. “In Search of Excellent Requirements,” Journal of the Quality Assurance Institute, vol. 9, no.
1 (January 1995) [won 1995 Best Article award from QAI].

Recent Conferences

Borland Developers Conference (1997, 1998)
Software Development East and West (1991-1992, 1994-1998)
Developing Strategic I/T Metrics Conference (1998)
Software Engineering Process Group Conference (1997)
Pacific Northwest Software Quality Conference (1997)
International Conference on Software Quality (1997)
Summit ’98 (1998)

Recent Client Companies for Requirements Classes or Consulting

West Group, Intel Corporation, The Foxboro Company, Merrill Lynch, Bell Atlantic, NYNEX
Science and Technology, Caterpillar, Advanced Information Services

