
Read My Lips: No New Models!1

Karl E. Wiegers

Process Impact
www.processimpact.com

Recently, I had dinner with James Bach, a thoughtful and well-known figure in the soft-
ware quality industry. At one point, James began to tell me about a new testing model he was de-
veloping. I gently interrupted him and offered the opinion that, with a few exceptions, the soft-
ware industry does not need any more models right now. We don’t need a lot of new formalisms
for software development, new design methods, new life cycle approaches, new frameworks for
process improvement, or new quality models.

What we do need is for practitioners to routinely and effectively apply the techniques de-
fined by our existing models and frameworks. Once we’ve reached the practical limit of these ap-
proaches, we can turn to improved models that provide guidance for working in better ways. To
be sure, some current approaches may be unworkable, and projects on the bleeding edge of tech-
nology, business needs, or development approaches may find current methods inadequate. More
sophisticated models may also benefit practitioners who have already pushed current methods to
their limits. My sampling of audiences at conferences and training seminars suggests, though, that
many organizations are not consistently applying existing approaches for software development
excellence.

I suggest here several sets of software engineering and management practices that, in my
experience, are still not being routinely applied across the industry. The problem is not always a
lack of suitable models to help us structure our thinking in these domains. The real problems often
include:

• insufficient awareness of current best practices and published standards in software develop-
ment, management, and quality;

• inadequate training of practitioners and managers in these established practices;

• resistance to change, as evidenced by Not Invented Here syndrome and an insistence that “our
project is different and those things don’t apply”; and

• a shortage of discipline, rigor, and available time for individuals to continuously improve their
personal software processes by applying a broad spectrum of superior techniques.

1 This paper was originally published in IEEE Software, September/October 1998. © 1998 IEEE. Personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works must be obtained from the IEEE.

Read My Lips: No New Models! Page 2

Why Create New Models?

New approaches to software development and management are promulgated for a variety
of reasons. Some organizations have pushed the limits of current approaches and really need a
better way. Early adopters like to create and try out new approaches, thereby serving as a valu-
able test bed for the rest of the industry. Sometimes it’s a matter of packaging old wine (e.g., sce-
narios) in new bottles (e.g., use cases). Often, frustration with the inability to apply a cumbersome
current model in a sensible and practical way leads to the next generation of models in some do-
main. Other times, new approaches may be developed simply because the ones already available
are not being adopted by the practitioner community. If a novel context helps a sound approach
find more common acceptance and push our profession forward, that’s progress.

Unfortunately, we sometimes find ourselves trying to sell a better mousetrap to people
who don’t even realize they have mice. As an example, some 315 software engineering standards
are currently available, of which those from the IEEE are perhaps the most widely known in
North America.1 However, my informal conference samplings suggest that less than 10% of the
audience members have access to the IEEE Software Engineering Standards Collection. It is dif-
ficult to conclude the standards are not useful, if you either aren’t aware of their existence or ha-
ven’t tried to follow them.

Process Improvement

A plethora of models have been developed to guide software process improvement pro-
grams and process assessments, including the Software Capability Maturity Model (CMM), Tril-
lium, SPICE, Bootstrap, TickIT, and others. Recently, new models have been advanced to ad-
dress personal and team software processes. Yet, many organizations do not have successful pro-
cess improvement programs in place today. Many practitioners either have not heard of the
CMM, or they hold large misconceptions about it. The Software Engineering Institute (SEI) has
engaged in a multi-year effort to revise the CMM, but I don’t think this effort will result in more
organizations applying it effectively.

Managers and change agents should examine their current process improvement efforts.
Are your teams applying any model effectively? Are they being sensible, not dogmatic, about im-
plementing improvements? Are they fixing current problems and addressing risk areas, rather than
chasing maturity levels and certifications? And, ultimately, are practitioners working in new, bet-
ter ways (the bottom line in process improvement)?

If the answers to these questions are “no,” the solution is not to concoct yet another proc-
ess improvement model. Instead, those of us in the process improvement business need to educate
our clients and cohorts on the intent and application of tools like the CMM. Using an established
framework to guide your process assessment and improvement activities is highly valuable. But
almost any of the existing choices will do.

We need to be flexible and nondogmatic in our interpretation of these models. Use them as
guidebooks of structured wisdom that can help us achieve our objectives of improved business
and technical success through process improvement. Conforming to the model’s expectations
should not become an end unto itself. If you try all these approaches and still find that none of the
existing improvement models fits your needs, perhaps then we should search for new and innova-
tive approaches.

Read My Lips: No New Models! Page 3

Testing

A software quality magazine recently published a series of columns delineating an elabo-
rate model for system testing. Several “testing maturity models” have been proposed by leaders in
the software quality industry. While some very large, very regimented projects may actually apply
these complex testing models, I think the real testing issues are closer to home.

Think about the developers in your organization who also do some testing. Do they have
testing books on their desks? (My informal surveys of conference attendees suggests not.) Have
they been trained in testing? (Ditto.) Do they write test plans? Are their tests documented and re-
peatable? Do they understand basic testing concepts? Can they describe the state of a program
after testing is complete?

If practitioners cannot answer such questions in the affirmative, a better testing model
probably won’t help them. Some training on testing practices and concepts, test case design and
documentation, and the use of automated testing tools will do more good than a new testing
model. Experienced testers can enhance their effectiveness by following the dictates of a rigorous
testing model. However, formulating ever more elaborate models of the testing process will do
little to improve the way average software developers test their products.

Design Methods

A multitude of design methods have been hawked over the past decades. First we went
through the structured methods revolution, which brought us useful techniques such as data flow
modeling, entity-relationship diagrams, state-transition diagrams, Warnier-Orr diagrams, and oth-
ers. This was followed by a series of object-oriented approaches, including CRC cards, Object-
Modeling Technique, Unified Modeling Language, and various other methods named after vari-
ous methodologists. Learning to model software systems through application of structured tech-
niques was a turning point in my software development career, as I began to depict, understand,
and improve systems in a disciplined way before constructing them. I certainly do not suggest that
analysis and design modeling is anything less than a key element of solid systems development.

But how does your team really do design today? Do team members spend much effort at
all between requirements and code? Are their designs diagrammed in any formal way? Has the
group standardized on the design notations to use? Do they use automated tools to draw design
models? Are the designs improved through iteration? If not, will the next design methodology to
come along get them to contemplate design before cutting code?

A lack of suitable methods and modeling techniques is probably not the bottleneck to get-
ting more development teams to perform rigorous design. More likely, it is the ability to under-
stand any design approach well enough to make it useful, the willingness to invest in necessary
training and tools, and an appreciation that improving design solutions through iteration is an ef-
fective route to higher quality, more robust systems.

Inspection

An industry guru once told me that formal inspections of software work products are be-
ing practiced by about 50% of software groups; several of my fellow consultants agree that 20%
is a more likely figure. Many practitioners do not understand the differences between informal de-
sign reviews or code walkthroughs, and formal inspections. Reviews to communicate information
are not differentiated from those intended to find defects. Three major books on inspections de-
scribe similar approaches, none in less than 350 pages. Purists debate the effectiveness of various

Read My Lips: No New Models! Page 4

inspection steps and methods, and new inspection methods are touted as superior with little em-
pirical evidence.

But does your team routinely inspect software work products of all types? Are they
trained in inspections and reviews? Do your inspections actually find defects? Do you collect and
use inspection metrics? Are inspections part of your software engineering culture? If not, is it be-
cause you’re waiting for a better inspection method to come along?

Despite decades of strongly positive experience and recognition as an industry best prac-
tice, formal inspection remains an enigma to many software professionals.2 In most cases, new
models for inspection are not required. Instead, let’s start with education about the process and
benefits of inspections, and some guidance about how and when to use them. Pragmatic, readable
books that help developers apply effective inspections as part of their standard software practice
will go farther than debates over nuances of approach in one inspection variant or another.

Risk Management

Risk management is becoming appreciated as a major component of effective software
project management and an industry best practice.2 The SEI has developed elaborate approaches
for multi-day project risk assessments, a detailed taxonomy of project risks, models for Software
Risk Evaluation, Continuous Risk Management, and Team Risk Management, and a Risk Man-
agement Map.3,4

But how do your projects perform risk management today? Do your project plans contain
even a simple list of risks? If yes, have they been analyzed for probability and impact? If yes, do
you have plans for mitigating the most severe? If yes, do you execute and track progress of those
plans? If yes, are those plans effective? If yes, do you record the risk management lessons learned
in a database for the benefit of future projects? If the answers to these questions are “no,” how
badly do you need a different risk management model?

My samplings suggest that many projects do not yet practice systematic risk management.
Complex models that define comprehensive approaches to risk management will not address this
shortcoming, although they can help those who already perform risk management reach the next
level of sophistication. More projects, though, need to begin simply documenting their major risks
and mitigation strategies, taking positive actions to control them, and tracking progress on risk
control. Risk management should become a routine topic of discussion at software development
conferences, not just those dealing with process improvement and project management.

Metrics

Several metrics leaders have suggested “dashboards” or “control panels” of key indicators
that software organizations and projects should use to track status. We’re encouraged to develop
“balanced scorecards” to monitor our projects and organizations, and yet religious wars are
waged over precisely what to measure. Literally hundreds of aspects of software products, proc-
esses, and projects can be measured, and somewhere there’s probably a model that includes each
of them.

But what’s the state of software measurement where you work? Does your organization
measure anything about its projects, products, and processes? Are you collecting reliable metrics
in multiple areas? Do you use the data to understand, to take corrective actions, and to predict?
Does your team have a healthy “measurement culture”? If not, will a better metrics model really
get you started?

Read My Lips: No New Models! Page 5

Elaborate measurement models are of little help to groups that currently collect little data
about their projects, lack a basic understanding of software metrics, or have a culture that avoids
measurement because of a fear of data misuse. Such organizations need basic education in soft-
ware measurement, simple tools to help them get started, and clear ties between their metrics and
their business objectives. Less obtrusive ways to collect software measurements that are better
integrated with the development process could reduce some of the barriers.

Certainly, there are deficiencies in current metrics, such as those dealing with the sizes of
software products, and collecting software metrics is often tedious. But I do not believe a lack of
adequate measurement models is the limiting factor that prevents organizations from beginning to
quantify certain aspects of the software work they do.

Practice What We Preach

I don’t think models are bad. I have found models that help structure my thinking and
provide a framework for making sensible decisions to be extremely valuable. My point is that the
software industry is not fully exploiting the models, standards, and frameworks we already have
available. Before we invent new models, let’s help developers, managers, and quality professionals
consistently and effectively apply the practices embodied in those that currently exist.

As educators, let’s incorporate a solid foundation of software industry best practices,
along with guidance about how to put them into action, into our curricula. As managers, let’s em-
phasize continuous learning in our organizations and reward those who apply better ways of
working. As practitioners, let’s read the literature and commit to improving our personal software
processes through effective application of what we’ve learned from others. And as industry lead-
ers, let’s not clutter the market with Yet Another Model until we’re convinced the ones we have
are truly not getting the job done.

Acknowledgments

I am grateful for the insightful comments made by reviewers James Bach, Johanna Rothman,
Wolfgang Strigel, and Doris Sturzenberger.

References

1. S. Magee and L.L. Tripp, Guide to Software Engineering Standards and Specifications,
Artech House, Boston, Mass., 1997.

2. N. Brown, “Industrial-Strength Management Strategies,” IEEE Software, Vol. 13, No. 4, July
1996, pp. 94-103.

3. R.P. Higuera and Y.Y. Haimes, “Software Risk Management,” Technical Report CMU/SEI-
96-TR-012, Software Engineering Insitute, 1996.

4. E.M. Hall, Managing Risk: Methods for Software Systems Development, Addison-Wesley,
Reading, Mass., 1998.

